Convergence of a Time Discretisation for Doubly Nonlinear Evolution Equations of Second Order
نویسندگان
چکیده
The convergence of a time discretisation with variable time steps is shown for a class of doubly nonlinear evolution equations of second order. This also proves existence of a weak solution. The operator acting on the zero-order term is assumed to be the sum of a linear, bounded, symmetric, strongly positive operator and a nonlinear operator that fulfills a certain growth and a Hölder-type continuity condition. The operator acting on the first-order time derivative is a nonlinear hemicontinuous operator that fulfills a certain growth condition and is (up to some shift) monotone and coercive.
منابع مشابه
Doubly nonlinear evolution equations of second order: Existence and fully discrete approximation
Existence of solutions for a class of doubly nonlinear evolution equations of second order is proven by studying a full discretisation. The discretisation combines a time stepping on a nonuniform time grid, which generalises the well-known Störmer–Verlet scheme, with an internal approximation scheme. The linear operator acting on the zero-order term is supposed to induce an inner product, where...
متن کاملOn a Full Discretisation for Nonlinear Second-Order Evolution Equations with Monotone Damping: Construction, Convergence, and Error Estimates
Convergence of a full discretisation method is studied for a class of nonlinear second-order in time evolution equations, where the nonlinear operator acting on the first-order time derivative of the solution is supposed to be hemicontinuous, monotone, coercive and to satisfy a certain growth condition, and the operator acting on the solution is assumed to be linear, bounded, symmetric, and str...
متن کاملNonlinear Guidance Law with Finite Time Convergence Considering Control Loop Dynamics
In this paper a new nonlinear guidance law with finite time convergence is proposed. The second order integrated guidance and control loop is formulated considering a first order control loop dynamics. By transforming the state equations to the normal form, a finite time stabilizer feedback linearization technique is proposed to guarantee the finite time convergence of the system states to zero...
متن کاملFull discretisation of second-order nonlinear evolution equations: strong convergence and applications
Abstract. Recent results on convergence of fully discrete approximations combining the Galerkin method with the explicit-implicit Euler scheme are extended to strong convergence under additional monotonicity assumptions. It is shown that these abstract results, formulated in the setting of evolution equations, apply, for example, to the partial differential equation for vibrating membrane with ...
متن کاملA modification of Chebyshev-Halley method free from second derivatives for nonlinear equations
In this paper, we present a new modification of Chebyshev-Halley method, free from second derivatives, to solve nonlinear equations. The convergence analysis shows that our modification is third-order convergent. Every iteration of this method requires one function and two first derivative evaluations. So, its efficiency index is $3^{1/3}=1.442$ that is better than that o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Foundations of Computational Mathematics
دوره 10 شماره
صفحات -
تاریخ انتشار 2010